Ce cours présente une introduction à l'apprentissage à partir des données, notamment à travers les réseaux de neurones, les Machines à Vecteurs Supports (SVM) et les méthodes graphiques, en vue de leur utilisation dans des applications réelles.
L'apprentissage automatique permet de construire, à partir des données empiriques, des modèles pour la prise de décision. Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, la surveillance, la bio-ingénierie, la climatologie, la sécurité environnementale, la recherche d'information, etc.
L'apprentissage automatique permet de construire, à partir des données empiriques, des modèles pour la prise de décision. Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, la surveillance, la bio-ingénierie, la climatologie, la sécurité environnementale, la recherche d'information, etc.