Retour

Modélisation statistique - STA110

Sans niveau spécifique
Maîtriser les outils de la modélisation statistique (sélection de modèles, validation, interprétation) dans un contexte général (données continues, discrètes, qualitatives, mixtes) via l'utilisation de méthodes paramétriques (modèles linéaires et modèle linéaire généralisé) ou non-paramétriques. Acquérir des connaissances ainsi qu'un savoir-faire dont l'objectif est de traiter un problème concret par une approche de modélisation (applications à des données réelles). Mettre en œuvre cette modélisation à l'aide d'un logiciel de modélisation statistique avancé (logiciel R) et savoir interpréter les résultats obtenus.
I) Méthodes paramétriques
Régression linéaire simple et multiple : modèle, moindres carrés, estimations, intervalles de confiance, tests, colinéarité, sélection de variables, validation, prédiction, interprétation. Recherche de points (aberrants, influents, atypiques et de points leviers).
Analyse de la Variance : à 1 facteur (mesures indépendantes, répétées) et à 2 facteurs (mesures indépendantes)  
Analyse de la Covariance (modèles, comparaison à la régression linéaire et à l'anova à 1 facteur à mesures indépendantes, paradoxe de Lord)
Régression logistique : modèle probit et logit, estimations, tests, sélection de modèles, validation, prédiction.
Modèle linéaire généralisé (regression de Poisson, modèle polytomique)
Introduction à la modélisation Bayésienne
Introduction à l'analyse de séries temporelles
II) Méthodes non-paramétriques
Régression spline
Estimateurs par moyennes locales (estimateurs à noyau)
Régression polynomiale locale
 
L'enseignement comporte une initiation au logiciel R et une mise en oeuvre de ce logiciel dans diverses applications.

établissements

Trouver un conseiller près de chez vous
Retour en haut de page