Transmettre les cadres méthodologiques et les outils logicielles utiles pour déployer et comprendre les fonctionnement des modèles d'IA modernes. Il s'adresse notamment aux cadres, ingénieurs, data scientists, chefs de projets et chercheurs dans des domaines applicatifs variés souhaitant acquérir des compétences techniques poussées dans le domaine de l'IA, et d'avoir une compréhension des enjeux afin de pouvoir adapter l'utilisation de ces modèles dans le contexte de leur activité professionnelle.
Apprentissage par renforcement.
Les méthodes d'apprentissage par renforcement sont de toute première importance pour la prise de décision en contexte incertain, avec des applications pour la théorie des jeux (e.g. récents succès des IA au Go), la robotique, ou le domaine financier
Modèles génératifs
Les méthodes génératives constituent actuellement une thématique très porteuse pour rendre les machines capables de produire artificiellement des données réalistes, comme les images ou l'audio. Ceci offre des applications très nombreuses dans les domaines de la synthèse d'images (films, animation, édition multi-média), la réalité augmentée (robotique, domotique, films, jeux vidéos), ou pour la création de jeux de grandes masses de données synthétiques nécessaires à l'entraînement des modèles de deep learning
Robustesse et incertitude décisionnelle
Cette partie aborde des domaines de recherche récents de l’intelligence artificielle qui visent à rendre les modèle d'IA fiables - une faiblesse connue des modèles état de l'art de deep learning par exemple. L'objectif est d'étudier comment améliorer la fiabilité de ce systèmes de prise de décision, ce qui est absolument primordial pour les faire pénétrer dans des domaines applicatifs hors de portée actuellement : ceci est en particulier crucial lorsque que la prise de décision revêt des enjeux de santé ou de sécurité publique (diagnostic médical, conduite et pilotage autonome, défense et sécurité, etc).
Les méthodes d'apprentissage par renforcement sont de toute première importance pour la prise de décision en contexte incertain, avec des applications pour la théorie des jeux (e.g. récents succès des IA au Go), la robotique, ou le domaine financier
Modèles génératifs
Les méthodes génératives constituent actuellement une thématique très porteuse pour rendre les machines capables de produire artificiellement des données réalistes, comme les images ou l'audio. Ceci offre des applications très nombreuses dans les domaines de la synthèse d'images (films, animation, édition multi-média), la réalité augmentée (robotique, domotique, films, jeux vidéos), ou pour la création de jeux de grandes masses de données synthétiques nécessaires à l'entraînement des modèles de deep learning
Robustesse et incertitude décisionnelle
Cette partie aborde des domaines de recherche récents de l’intelligence artificielle qui visent à rendre les modèle d'IA fiables - une faiblesse connue des modèles état de l'art de deep learning par exemple. L'objectif est d'étudier comment améliorer la fiabilité de ce systèmes de prise de décision, ce qui est absolument primordial pour les faire pénétrer dans des domaines applicatifs hors de portée actuellement : ceci est en particulier crucial lorsque que la prise de décision revêt des enjeux de santé ou de sécurité publique (diagnostic médical, conduite et pilotage autonome, défense et sécurité, etc).